3.1.66 \(\int \frac {\sin ^6(c+d x)}{a+a \sec (c+d x)} \, dx\) [66]

3.1.66.1 Optimal result
3.1.66.2 Mathematica [A] (verified)
3.1.66.3 Rubi [A] (verified)
3.1.66.4 Maple [A] (verified)
3.1.66.5 Fricas [A] (verification not implemented)
3.1.66.6 Sympy [F]
3.1.66.7 Maxima [B] (verification not implemented)
3.1.66.8 Giac [A] (verification not implemented)
3.1.66.9 Mupad [B] (verification not implemented)

3.1.66.1 Optimal result

Integrand size = 21, antiderivative size = 99 \[ \int \frac {\sin ^6(c+d x)}{a+a \sec (c+d x)} \, dx=-\frac {x}{16 a}-\frac {\cos (c+d x) \sin (c+d x)}{16 a d}+\frac {\cos ^3(c+d x) \sin (c+d x)}{8 a d}+\frac {\cos ^3(c+d x) \sin ^3(c+d x)}{6 a d}+\frac {\sin ^5(c+d x)}{5 a d} \]

output
-1/16*x/a-1/16*cos(d*x+c)*sin(d*x+c)/a/d+1/8*cos(d*x+c)^3*sin(d*x+c)/a/d+1 
/6*cos(d*x+c)^3*sin(d*x+c)^3/a/d+1/5*sin(d*x+c)^5/a/d
 
3.1.66.2 Mathematica [A] (verified)

Time = 0.51 (sec) , antiderivative size = 112, normalized size of antiderivative = 1.13 \[ \int \frac {\sin ^6(c+d x)}{a+a \sec (c+d x)} \, dx=\frac {\cos ^2\left (\frac {1}{2} (c+d x)\right ) \sec (c+d x) \left (75 c-60 d x+120 \sin (c+d x)+15 \sin (2 (c+d x))-60 \sin (3 (c+d x))+15 \sin (4 (c+d x))+12 \sin (5 (c+d x))-5 \sin (6 (c+d x))-75 \tan \left (\frac {c}{2}\right )\right )}{480 a d (1+\sec (c+d x))} \]

input
Integrate[Sin[c + d*x]^6/(a + a*Sec[c + d*x]),x]
 
output
(Cos[(c + d*x)/2]^2*Sec[c + d*x]*(75*c - 60*d*x + 120*Sin[c + d*x] + 15*Si 
n[2*(c + d*x)] - 60*Sin[3*(c + d*x)] + 15*Sin[4*(c + d*x)] + 12*Sin[5*(c + 
 d*x)] - 5*Sin[6*(c + d*x)] - 75*Tan[c/2]))/(480*a*d*(1 + Sec[c + d*x]))
 
3.1.66.3 Rubi [A] (verified)

Time = 0.64 (sec) , antiderivative size = 103, normalized size of antiderivative = 1.04, number of steps used = 16, number of rules used = 15, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.714, Rules used = {3042, 4360, 25, 25, 3042, 3318, 3042, 3044, 15, 3048, 3042, 3048, 3042, 3115, 24}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sin ^6(c+d x)}{a \sec (c+d x)+a} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\cos \left (c+d x-\frac {\pi }{2}\right )^6}{a-a \csc \left (c+d x-\frac {\pi }{2}\right )}dx\)

\(\Big \downarrow \) 4360

\(\displaystyle \int -\frac {\sin ^6(c+d x) \cos (c+d x)}{a (-\cos (c+d x))-a}dx\)

\(\Big \downarrow \) 25

\(\displaystyle -\int -\frac {\cos (c+d x) \sin ^6(c+d x)}{\cos (c+d x) a+a}dx\)

\(\Big \downarrow \) 25

\(\displaystyle \int \frac {\sin ^6(c+d x) \cos (c+d x)}{a \cos (c+d x)+a}dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\sin \left (c+d x+\frac {\pi }{2}\right ) \cos \left (c+d x+\frac {\pi }{2}\right )^6}{a \sin \left (c+d x+\frac {\pi }{2}\right )+a}dx\)

\(\Big \downarrow \) 3318

\(\displaystyle \frac {\int \cos (c+d x) \sin ^4(c+d x)dx}{a}-\frac {\int \cos ^2(c+d x) \sin ^4(c+d x)dx}{a}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\int \cos (c+d x) \sin (c+d x)^4dx}{a}-\frac {\int \cos (c+d x)^2 \sin (c+d x)^4dx}{a}\)

\(\Big \downarrow \) 3044

\(\displaystyle \frac {\int \sin ^4(c+d x)d\sin (c+d x)}{a d}-\frac {\int \cos (c+d x)^2 \sin (c+d x)^4dx}{a}\)

\(\Big \downarrow \) 15

\(\displaystyle \frac {\sin ^5(c+d x)}{5 a d}-\frac {\int \cos (c+d x)^2 \sin (c+d x)^4dx}{a}\)

\(\Big \downarrow \) 3048

\(\displaystyle \frac {\sin ^5(c+d x)}{5 a d}-\frac {\frac {1}{2} \int \cos ^2(c+d x) \sin ^2(c+d x)dx-\frac {\sin ^3(c+d x) \cos ^3(c+d x)}{6 d}}{a}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\sin ^5(c+d x)}{5 a d}-\frac {\frac {1}{2} \int \cos (c+d x)^2 \sin (c+d x)^2dx-\frac {\sin ^3(c+d x) \cos ^3(c+d x)}{6 d}}{a}\)

\(\Big \downarrow \) 3048

\(\displaystyle \frac {\sin ^5(c+d x)}{5 a d}-\frac {\frac {1}{2} \left (\frac {1}{4} \int \cos ^2(c+d x)dx-\frac {\sin (c+d x) \cos ^3(c+d x)}{4 d}\right )-\frac {\sin ^3(c+d x) \cos ^3(c+d x)}{6 d}}{a}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\sin ^5(c+d x)}{5 a d}-\frac {\frac {1}{2} \left (\frac {1}{4} \int \sin \left (c+d x+\frac {\pi }{2}\right )^2dx-\frac {\sin (c+d x) \cos ^3(c+d x)}{4 d}\right )-\frac {\sin ^3(c+d x) \cos ^3(c+d x)}{6 d}}{a}\)

\(\Big \downarrow \) 3115

\(\displaystyle \frac {\sin ^5(c+d x)}{5 a d}-\frac {\frac {1}{2} \left (\frac {1}{4} \left (\frac {\int 1dx}{2}+\frac {\sin (c+d x) \cos (c+d x)}{2 d}\right )-\frac {\sin (c+d x) \cos ^3(c+d x)}{4 d}\right )-\frac {\sin ^3(c+d x) \cos ^3(c+d x)}{6 d}}{a}\)

\(\Big \downarrow \) 24

\(\displaystyle \frac {\sin ^5(c+d x)}{5 a d}-\frac {\frac {1}{2} \left (\frac {1}{4} \left (\frac {\sin (c+d x) \cos (c+d x)}{2 d}+\frac {x}{2}\right )-\frac {\sin (c+d x) \cos ^3(c+d x)}{4 d}\right )-\frac {\sin ^3(c+d x) \cos ^3(c+d x)}{6 d}}{a}\)

input
Int[Sin[c + d*x]^6/(a + a*Sec[c + d*x]),x]
 
output
Sin[c + d*x]^5/(5*a*d) - (-1/6*(Cos[c + d*x]^3*Sin[c + d*x]^3)/d + (-1/4*( 
Cos[c + d*x]^3*Sin[c + d*x])/d + (x/2 + (Cos[c + d*x]*Sin[c + d*x])/(2*d)) 
/4)/2)/a
 

3.1.66.3.1 Defintions of rubi rules used

rule 15
Int[(a_.)*(x_)^(m_.), x_Symbol] :> Simp[a*(x^(m + 1)/(m + 1)), x] /; FreeQ[ 
{a, m}, x] && NeQ[m, -1]
 

rule 24
Int[a_, x_Symbol] :> Simp[a*x, x] /; FreeQ[a, x]
 

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3044
Int[cos[(e_.) + (f_.)*(x_)]^(n_.)*((a_.)*sin[(e_.) + (f_.)*(x_)])^(m_.), x_ 
Symbol] :> Simp[1/(a*f)   Subst[Int[x^m*(1 - x^2/a^2)^((n - 1)/2), x], x, a 
*Sin[e + f*x]], x] /; FreeQ[{a, e, f, m}, x] && IntegerQ[(n - 1)/2] &&  !(I 
ntegerQ[(m - 1)/2] && LtQ[0, m, n])
 

rule 3048
Int[(cos[(e_.) + (f_.)*(x_)]*(b_.))^(n_)*((a_.)*sin[(e_.) + (f_.)*(x_)])^(m 
_), x_Symbol] :> Simp[(-a)*(b*Cos[e + f*x])^(n + 1)*((a*Sin[e + f*x])^(m - 
1)/(b*f*(m + n))), x] + Simp[a^2*((m - 1)/(m + n))   Int[(b*Cos[e + f*x])^n 
*(a*Sin[e + f*x])^(m - 2), x], x] /; FreeQ[{a, b, e, f, n}, x] && GtQ[m, 1] 
 && NeQ[m + n, 0] && IntegersQ[2*m, 2*n]
 

rule 3115
Int[((b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[(-b)*Cos[c + d* 
x]*((b*Sin[c + d*x])^(n - 1)/(d*n)), x] + Simp[b^2*((n - 1)/n)   Int[(b*Sin 
[c + d*x])^(n - 2), x], x] /; FreeQ[{b, c, d}, x] && GtQ[n, 1] && IntegerQ[ 
2*n]
 

rule 3318
Int[((cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((d_.)*sin[(e_.) + (f_.)*(x_)])^( 
n_.))/((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[g^2/a   Int 
[(g*Cos[e + f*x])^(p - 2)*(d*Sin[e + f*x])^n, x], x] - Simp[g^2/(b*d)   Int 
[(g*Cos[e + f*x])^(p - 2)*(d*Sin[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, 
d, e, f, g, n, p}, x] && EqQ[a^2 - b^2, 0]
 

rule 4360
Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_.)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + 
(a_))^(m_.), x_Symbol] :> Int[(g*Cos[e + f*x])^p*((b + a*Sin[e + f*x])^m/Si 
n[e + f*x]^m), x] /; FreeQ[{a, b, e, f, g, p}, x] && IntegerQ[m]
 
3.1.66.4 Maple [A] (verified)

Time = 0.59 (sec) , antiderivative size = 77, normalized size of antiderivative = 0.78

method result size
parallelrisch \(\frac {-60 d x +120 \sin \left (d x +c \right )+12 \sin \left (5 d x +5 c \right )-60 \sin \left (3 d x +3 c \right )-5 \sin \left (6 d x +6 c \right )+15 \sin \left (4 d x +4 c \right )+15 \sin \left (2 d x +2 c \right )}{960 d a}\) \(77\)
risch \(-\frac {x}{16 a}+\frac {\sin \left (d x +c \right )}{8 a d}-\frac {\sin \left (6 d x +6 c \right )}{192 d a}+\frac {\sin \left (5 d x +5 c \right )}{80 d a}+\frac {\sin \left (4 d x +4 c \right )}{64 d a}-\frac {\sin \left (3 d x +3 c \right )}{16 d a}+\frac {\sin \left (2 d x +2 c \right )}{64 d a}\) \(107\)
derivativedivides \(\frac {-\frac {64 \left (\frac {\tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{11}}{512}+\frac {17 \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{9}}{1536}-\frac {223 \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{7}}{1280}-\frac {33 \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{5}}{1280}-\frac {17 \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{3}}{1536}-\frac {\tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{512}\right )}{\left (1+\tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}\right )^{6}}-\frac {\arctan \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{8}}{d a}\) \(116\)
default \(\frac {-\frac {64 \left (\frac {\tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{11}}{512}+\frac {17 \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{9}}{1536}-\frac {223 \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{7}}{1280}-\frac {33 \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{5}}{1280}-\frac {17 \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{3}}{1536}-\frac {\tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{512}\right )}{\left (1+\tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}\right )^{6}}-\frac {\arctan \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{8}}{d a}\) \(116\)
norman \(\frac {-\frac {x}{16 a}+\frac {\tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{8 a d}+\frac {17 \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{3}}{24 a d}+\frac {33 \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{5}}{20 a d}+\frac {223 \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{7}}{20 a d}-\frac {17 \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{9}}{24 a d}-\frac {\tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{11}}{8 a d}-\frac {3 x \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}{8 a}-\frac {15 x \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}}{16 a}-\frac {5 x \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{6}}{4 a}-\frac {15 x \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{8}}{16 a}-\frac {3 x \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{10}}{8 a}-\frac {x \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{12}}{16 a}}{\left (1+\tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}\right )^{6}}\) \(238\)

input
int(sin(d*x+c)^6/(a+a*sec(d*x+c)),x,method=_RETURNVERBOSE)
 
output
1/960*(-60*d*x+120*sin(d*x+c)+12*sin(5*d*x+5*c)-60*sin(3*d*x+3*c)-5*sin(6* 
d*x+6*c)+15*sin(4*d*x+4*c)+15*sin(2*d*x+2*c))/d/a
 
3.1.66.5 Fricas [A] (verification not implemented)

Time = 0.29 (sec) , antiderivative size = 70, normalized size of antiderivative = 0.71 \[ \int \frac {\sin ^6(c+d x)}{a+a \sec (c+d x)} \, dx=-\frac {15 \, d x + {\left (40 \, \cos \left (d x + c\right )^{5} - 48 \, \cos \left (d x + c\right )^{4} - 70 \, \cos \left (d x + c\right )^{3} + 96 \, \cos \left (d x + c\right )^{2} + 15 \, \cos \left (d x + c\right ) - 48\right )} \sin \left (d x + c\right )}{240 \, a d} \]

input
integrate(sin(d*x+c)^6/(a+a*sec(d*x+c)),x, algorithm="fricas")
 
output
-1/240*(15*d*x + (40*cos(d*x + c)^5 - 48*cos(d*x + c)^4 - 70*cos(d*x + c)^ 
3 + 96*cos(d*x + c)^2 + 15*cos(d*x + c) - 48)*sin(d*x + c))/(a*d)
 
3.1.66.6 Sympy [F]

\[ \int \frac {\sin ^6(c+d x)}{a+a \sec (c+d x)} \, dx=\frac {\int \frac {\sin ^{6}{\left (c + d x \right )}}{\sec {\left (c + d x \right )} + 1}\, dx}{a} \]

input
integrate(sin(d*x+c)**6/(a+a*sec(d*x+c)),x)
 
output
Integral(sin(c + d*x)**6/(sec(c + d*x) + 1), x)/a
 
3.1.66.7 Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 278 vs. \(2 (89) = 178\).

Time = 0.30 (sec) , antiderivative size = 278, normalized size of antiderivative = 2.81 \[ \int \frac {\sin ^6(c+d x)}{a+a \sec (c+d x)} \, dx=\frac {\frac {\frac {15 \, \sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} + \frac {85 \, \sin \left (d x + c\right )^{3}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{3}} + \frac {198 \, \sin \left (d x + c\right )^{5}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{5}} + \frac {1338 \, \sin \left (d x + c\right )^{7}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{7}} - \frac {85 \, \sin \left (d x + c\right )^{9}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{9}} - \frac {15 \, \sin \left (d x + c\right )^{11}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{11}}}{a + \frac {6 \, a \sin \left (d x + c\right )^{2}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{2}} + \frac {15 \, a \sin \left (d x + c\right )^{4}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{4}} + \frac {20 \, a \sin \left (d x + c\right )^{6}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{6}} + \frac {15 \, a \sin \left (d x + c\right )^{8}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{8}} + \frac {6 \, a \sin \left (d x + c\right )^{10}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{10}} + \frac {a \sin \left (d x + c\right )^{12}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{12}}} - \frac {15 \, \arctan \left (\frac {\sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1}\right )}{a}}{120 \, d} \]

input
integrate(sin(d*x+c)^6/(a+a*sec(d*x+c)),x, algorithm="maxima")
 
output
1/120*((15*sin(d*x + c)/(cos(d*x + c) + 1) + 85*sin(d*x + c)^3/(cos(d*x + 
c) + 1)^3 + 198*sin(d*x + c)^5/(cos(d*x + c) + 1)^5 + 1338*sin(d*x + c)^7/ 
(cos(d*x + c) + 1)^7 - 85*sin(d*x + c)^9/(cos(d*x + c) + 1)^9 - 15*sin(d*x 
 + c)^11/(cos(d*x + c) + 1)^11)/(a + 6*a*sin(d*x + c)^2/(cos(d*x + c) + 1) 
^2 + 15*a*sin(d*x + c)^4/(cos(d*x + c) + 1)^4 + 20*a*sin(d*x + c)^6/(cos(d 
*x + c) + 1)^6 + 15*a*sin(d*x + c)^8/(cos(d*x + c) + 1)^8 + 6*a*sin(d*x + 
c)^10/(cos(d*x + c) + 1)^10 + a*sin(d*x + c)^12/(cos(d*x + c) + 1)^12) - 1 
5*arctan(sin(d*x + c)/(cos(d*x + c) + 1))/a)/d
 
3.1.66.8 Giac [A] (verification not implemented)

Time = 0.30 (sec) , antiderivative size = 113, normalized size of antiderivative = 1.14 \[ \int \frac {\sin ^6(c+d x)}{a+a \sec (c+d x)} \, dx=-\frac {\frac {15 \, {\left (d x + c\right )}}{a} + \frac {2 \, {\left (15 \, \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{11} + 85 \, \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{9} - 1338 \, \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{7} - 198 \, \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{5} - 85 \, \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} - 15 \, \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right )}}{{\left (\tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + 1\right )}^{6} a}}{240 \, d} \]

input
integrate(sin(d*x+c)^6/(a+a*sec(d*x+c)),x, algorithm="giac")
 
output
-1/240*(15*(d*x + c)/a + 2*(15*tan(1/2*d*x + 1/2*c)^11 + 85*tan(1/2*d*x + 
1/2*c)^9 - 1338*tan(1/2*d*x + 1/2*c)^7 - 198*tan(1/2*d*x + 1/2*c)^5 - 85*t 
an(1/2*d*x + 1/2*c)^3 - 15*tan(1/2*d*x + 1/2*c))/((tan(1/2*d*x + 1/2*c)^2 
+ 1)^6*a))/d
 
3.1.66.9 Mupad [B] (verification not implemented)

Time = 16.46 (sec) , antiderivative size = 106, normalized size of antiderivative = 1.07 \[ \int \frac {\sin ^6(c+d x)}{a+a \sec (c+d x)} \, dx=\frac {-\frac {{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^{11}}{8}-\frac {17\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^9}{24}+\frac {223\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^7}{20}+\frac {33\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^5}{20}+\frac {17\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^3}{24}+\frac {\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}{8}}{a\,d\,{\left ({\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^2+1\right )}^6}-\frac {x}{16\,a} \]

input
int(sin(c + d*x)^6/(a + a/cos(c + d*x)),x)
 
output
(tan(c/2 + (d*x)/2)/8 + (17*tan(c/2 + (d*x)/2)^3)/24 + (33*tan(c/2 + (d*x) 
/2)^5)/20 + (223*tan(c/2 + (d*x)/2)^7)/20 - (17*tan(c/2 + (d*x)/2)^9)/24 - 
 tan(c/2 + (d*x)/2)^11/8)/(a*d*(tan(c/2 + (d*x)/2)^2 + 1)^6) - x/(16*a)